
1

The World Wide Web is widely used by businesses, government agencies, and

2

many individuals. But the Internet and the Web are extremely vulnerable to
compromises of various sorts, with a range of threats as shown briefly above, and in
detail in Stallings Table 16.1. These can be described as passive attacks including
eavesdropping on network traffic between browser and server and gaining access
to information on a Web site that is supposed to be restricted; and active attacks
including impersonating another user, altering messages in transit between client
and server, and altering information on a Web site. The web needs added security
mechanisms to address these threats.

A number of approaches to providing Web security are possible. The various
approaches that have been considered are similar in the services they provide and,
to some extent, in the mechanisms that they use, but they differ with respect to their
scope of applicability and their relative location within the TCP/IP protocol stack.
Stallings Figure 16.1 illustrates this difference.

One way to provide Web security is to use IP Security (Figure 16.1a). The
advantage of using IPSec is that it is transparent to end users and applications and
provides a general-purpose solution. Further, IPSec includes a filtering capability so
only selected traffic need incur the IPSec processing overhead.

Another relatively general-purpose solution is to implement security just above TCP
(Figure 16.1b). The foremost example of this approach is the Secure Sockets Layer
(SSL) and the follow-on Internet standard known as Transport Layer Security (TLS).
At this level, there are two implementation choices. For full generality, SSL (or TLS)
could be provided as part of the underlying protocol suite and therefore be
transparent to applications. Alternatively, SSL can be embedded in specific
packages, e.g. both the Netscape and Microsoft Explorer browsers come with SSL,
& most Web servers have implemented it.

Application-specific security services are embedded within the particular application.
Figure 16.1c shows examples of this architecture. The advantage of this approach
is that the service can be tailored to the specific needs of a given application.

3

SSL probably most widely used Web security mechanism, and it is implemented at

4

the Transport layer (cf. figure 16.1b on previous slide).

SSL is designed to make use of TCP to provide a reliable end-to-end secure
service. Netscape originated SSL. Version 3 of the protocol was designed with
public review and input from industry and was published as an Internet draft
document. Subsequently, when a consensus was reached to submit the protocol for
Internet standardization, the TLS working group was formed within IETF to develop
a common standard. This first published version of TLS can be viewed as
essentially an SSLv3.1 and is very close to and backward compatible with SSLv3.
SSL is not a single protocol but rather two layers of protocol, as shown next.

Stallings Figure 16.2 shows the SSL Protocol stack.

5

The SSL Record Protocol provides basic security services to various higher-layer
protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides the
transfer service for Web client/server interaction, can operate on top of SSL.

Three higher-layer protocols are also defined as part of SSL: the Handshake
Protocol, Change Cipher Spec Protocol, and Alert Protocol. These SSL-specific
protocols are used in the management of SSL exchanges.

Two important SSL concepts are the SSL connection and the SSL session:

6

• Connection: A connection is a network transport that provides a suitable type of
service, such connections are transient, peer-to-peer relationships, associated with
one session

• Session: An SSL session is an association between a client and a server, created
by the Handshake Protocol. Sessions define a set of cryptographic security
parameters, which can be shared among multiple connections. Sessions are used
to avoid the expensive negotiation of new security parameters for each connection.

Between any pair of parties (applications such as HTTP on client and server), there
may be multiple secure connections. In theory, there may also be multiple
simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is
established, there is a current operating state for both read and write (i.e., receive
and send). In addition, during the Handshake Protocol, pending read and write
states are created. Upon successful conclusion of the Handshake Protocol, the
pending states become the current states. A session state and a connection state
are defined by sets of parameters, see text for details.

SSL Record Protocol defines two services for SSL connections:

7

• Confidentiality: The Handshake Protocol defines a shared secret key that is used
for conventional encryption of SSL payloads. The message is compressed before
being concatenated with the MAC and encrypted, with a range of ciphers being
supported as shown.

• Message Integrity: The Handshake Protocol also defines a shared secret key that
is used to form a message authentication code (MAC), which is similar to HMAC

Stallings Figure16.3 shows the overall operation of the SSL Record Protocol. The

8

Record Protocol takes an application message to be transmitted, fragments the
data into manageable blocks, optionally compresses the data, computes and
appends a MAC (using a hash very similar to HMAC), encrypts (using one of the
symmetric algorithms listed on the previous slide), adds a header (with details of the
SSL content type, major/minor version, and compressed length), and transmits the
resulting unit in a TCP segment. Received data are decrypted, verified,
decompressed, and reassembled and then delivered to higher-layer applications.
See text for additional details.

The Change Cipher Spec Protocol is one of the three SSL-specific protocols that

9

use the SSL Record Protocol, and it is the simplest, consisting of a single message
(shown in Stallings Figure 16.5a), which consists of a single byte with the value 1.
The sole purpose of this message is to cause the pending state to be copied into
the current state, which updates the cipher suite to be used on this connection.

The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with

10

other applications that use SSL, alert messages are compressed and encrypted, as
specified by the current state.

Each message in this protocol consists of two bytes (as shown in Stallings Figure
16.5b), the first takes the value warning(1) or fatal(2) to convey the severity of the
message. The second byte contains a code that indicates the specific alert. The first
group shown are the fatal alerts, the others are warnings.

The most complex part of SSL is the Handshake Protocol. This protocol allows the

11

server and client to authenticate each other and to negotiate an encryption and
MAC algorithm and cryptographic keys to be used to protect data sent in an SSL
record. The Handshake Protocol is used before any application data is transmitted.
The Handshake Protocol consists of a series of messages exchanged by client and
server, which have the format shown in Stallings Figure 16.5c, and which can be
viewed in 4 phases:

•Phase 1. Establish Security Capabilities - this phase is used by the client to initiate
a logical connection and to establish the security capabilities that will be associated
with it

•Phase 2. Server Authentication and Key Exchange - the server begins this phase
by sending its certificate if it needs to be authenticated.

•Phase 3. Client Authentication and Key Exchange - the client should verify that the
server provided a valid certificate if required and check that the server_hello
parameters are acceptable

•Phase 4. Finish - this phase completes the setting up of a secure connection. The
client sends a change_cipher_spec message and copies the pending CipherSpec
into the current CipherSpec. At this point the handshake is complete and the client
and server may begin to exchange application layer data.

Stallings Figure16.6 shows the initial exchange needed to establish a logical

12

connection between client and server. The exchange can be viewed as having the
four phases discussed previously. Additional details on the operation of these
phases is given in the text.

Two further items are of interest: the creation of a shared master secret by means
of the key exchange, and the generation of cryptographic parameters from the
master secret.

The shared master secret is a one-time 48-byte value (384 bits) generated for this
session by means of secure key exchange. The creation is in two stages. First, a
pre_master_secret is exchanged. Second, the master_secret is calculated by both
parties. For pre_master_secret exchange, there are two possibilities, using either
RSA or Diffie-Hellman. Both sides now compute the master_secret by hashing the
relevant information, as detailed in the text.

CipherSpecs require a client write MAC secret, a server write MAC secret, a client
write key, a server write key, a client write IV, and a server write IV, which are
generated from the master secret in that order. These parameters are generated
from the master secret by hashing the master secret into a sequence of secure
bytes of sufficient length for all needed parameters.

13

TLS is an IETF standardization initiative whose goal is to produce an Internet

14

standard version of SSL. TLS is defined as a Proposed Internet Standard in RFC
2246. RFC 2246 is very similar to SSLv3, but with a number of minor differences in
the areas shown, as discussed in the text.

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to implement
secure communication between a Web browser and a Web server. The HTTPS
capability is built into all modern Web browsers. Its use depends on the Web server
supporting HTTPS communication. The principal difference seen by a user of a web
browser is that URL (uniform resource locator) addresses begin with https:// rather
than http://. A normal HTTP connection uses port 80. If HTTPS is specified, port 443
is specified, which invokes SSL. When HTTPS is used, the following elements of
the communication are encrypted: URL of the requested document, Contents of the
document, Contents of browser forms (filled in by browser user), Cookies sent from
browser to server and from server to browser, and Contents of HTTP header.
HTTPS is documented in RFC 2818, HTTP Over TLS. There is no fundamental
change in using HTTP over either SSL or TLS, and both implementations are
referred to as HTTPS.

15

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The
client initiates a connection to the server on the appropriate port and then sends the
TLS ClientHello to begin the TLS handshake. When the TLS handshake has
finished. The client may then initiate the first HTTP request. All HTTP data is to be
sent as TLS application data. Normal HTTP behavior, including retained
connections is followed.

An HTTP client or server can indicate the closing of a connection by including in an
HTTP record: “Connection: close”. This indicates that the connection will be closed
after this record is delivered. The closure of an HTTPS connection requires that TLS
close the connection with the peer TLS entity on the remote side, which will involve
closing the underlying TCP connection. At the TLS level, the proper way to close a
connection is for each side to use the TLS alert protocol to send a close_notify alert.
TLS implementations must initiate an exchange of closure alerts before closing a
connection. A TLS implementation may, after sending a closure alert, close the
connection without waiting for the peer to send its closure alert, generating an
"incomplete close". Note that an implementation that does this may choose to reuse
the session. This should only be done when the application knows (typically through
detecting HTTP message boundaries) that it has received all the message data that
it cares about. HTTP clients must also be able to cope with a situation in which the
underlying TCP connection is terminated without a prior close_notify alert and
without a Connection: close indicator. Such a situation could be due to a
programming error on the server, or a communication error that causes the TCP
connection to drop. However, the unannounced TCP closure could be evidence of
some sort of attack. So the HTTPS client should issue some sort of security
warning when this occurs.

16

Secure Shell (SSH) is a protocol for secure network communications designed to be
relatively simple and inexpensive to implement. The initial version, SSH1 was
focused on providing a secure remote logon facility to replace TELNET and other
remote logon schemes that provided no security. SSH also provides a more general
client/server capability and can be used for such network functions as file transfer
and email. A new version, SSH2, fixes a number of security flaws in the original
scheme. SSH2 is documented as a proposed standard in IETF RFCs 4250 through
4254. SSH client and server applications are widely available for most operating
systems. It has become the method of choice for remote login and X tunneling and
is a rapidly becoming one of the most pervasive applications for encryption
technology outside of embedded systems.

17

SSH is organized as three protocols that typically run on top of TCP (Stallings
Figure 16.8):

• Transport Layer Protocol: Provides server authentication, data confidentiality,
and data integrity with forward secrecy (i.e., if a key is compromised during one
session, the knowledge does not affect the security of earlier sessions). The
transport layer may optionally provide compression.

• User Authentication Protocol : Authenticates the user to the server.

• Connection Protocol: Multiplexes multiple logical communications channels over
a single underlying SSH connection.

18

Server authentication occurs at the transport layer, based on the server possessing
a public/private key pair. The server host key is used during key exchange to
authenticate the identity of the host. For this to be possible, the client must have a
priori knowledge of the server's public host key.

Next, consider events in the SSH Transport Layer Protocol. First, a client
establishes a TCP connection to the server. Once the connection is established, the
client and server exchange data, referred to as packets, in the data field of a TCP
segment. Each packet has the format shown in Stallings Figure 16.10 and
described in the text.

The SSH Transport Layer packet exchange consists of a sequence of steps. The
first step, the identification string exchange , begins with the client sending a
packet with an identification string. Next comes algorithm negotiation . Each side
sends an SSH_MSG_KEXINIT containing lists of supported algorithms, one list for
each type of cryptographic algorithm, in the order of preference to the sender. For
each category, the algorithm chosen is the first algorithm on the client's list that is
also supported by the server. The next step is key exchange . The specification
allows for alternative methods of key exchange, but at present only two versions of
Diffie-Hellman key exchange are specified. As a result of these steps, the two sides
now share a master key K. In addition, the server has been authenticated to the
client. The end of key exchange is signaled by the exchange of
SSH_MSG_NEWKEYS packets. At this point, both sides may start using the keys
generated from K, as discussed subsequently. The final step is service request .
The client sends an SSH_MSG_SERVICE_REQUEST packet to request either the
User Authentication or the Connection Protocol. Subsequent to this, all data is
exchanged as the payload of an SSH Transport Layer packet, protected by
encryption and MAC. 19

The User Authentication Protocol provides the means by which the client is
authenticated to the server. Three types of messages are always used in the User
Authentication Protocol. Authentication requests from the client have type
SSH_MSG_USERAUTH_REQUEST. If the server either (a) rejects the
authentication request, or (b) accepts the request but requires one or more
additional authentication methods, the server sends a
SSH_MSG_USERAUTH_FAILURE message that includes a list of methods that
may productively continue the dialog. If the server accepts authentication then it
sends a single byte message, SSH_MSG_USERAUTH_SUCCESS.

The server may require one or more of the following authentication methods:

•publickey - client sends a message to the server that contains the client's public
key, with the message signed by the client's private key

•password - client sends a message containing a plaintext password, protected by
TLS encryption

•hostbased - authentication is performed on the client's host, rather than the client
itself

20

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol and
assumes that a secure authentication connection is in use. That secure
authentication connection, referred to as a tunnel is used by the Connection
Protocol to multiple a number of logical channels. All types of communication using
SSH, such as a terminal session, are supported using separate channels. Either
side may open a channel. For each channel, each side associates a unique channel
number, which need not be the same on both ends. Channels are flow controlled
using a window mechanism. No data may be sent to a channel until a message is
received to indicate that window space is available. The life of a channel
progresses through three stages: opening a channel, data transfer, and closing a
channel. Four channel types are recognized in the SSH Connection Protocol
specification:

•session - remote execution of a program

•x11 - X Window System display traffic

•forwarded-tcpip - remote port forwarding

•direct-tcpip - local port forwarding

21

Stallings Figure 16.11 provides an example of Connection Protocol Exchange.

22

One of the most useful features of SSH is port forwarding / tunneling. Port
forwarding provides the ability to convert any insecure TCP connection into a secure forwarding provides the ability to convert any insecure TCP connection into a secure
SSH connection. Note that any application that runs on top of TCP has a port
number. Incoming TCP traffic is delivered to the appropriate application on the basis
of the port number. To secure such a connection, SSH is configured so that the SSH
Transport Layer Protocol establishes a TCP connection between the SSH client and
server entities, with TCP port numbers a and b, respectively. A secure SSH tunnel is
established over this TCP connection. Traffic from the client at port x is redirected to
the local SSH entity and travels through the tunnel where the remote SSH entity
delivers the data to the server application on port y. Traffic in the other direction is
similarly redirected.
SSH supports two types of port forwarding: local forwarding and remote forwarding.
Local forwarding allows the client to set up a "hijacker" process. This will intercept
selected application level traffic and redirect it from an unsecured TCP connection
to a secure SSH tunnel. This could be used to secure the traffic from an email client
on your desktop that gets email from the mail server via POP, the Post Office
Protocol. With remote forwarding , the user's SSH client acts on the server's
behalf. The client receives traffic with a given destination port number, places the
traffic on the correct port and sends it to the destination the user chooses. This
could be used to securely access a server at work from a home computer.

23

Chapter 16 summary.

24

